1

Errata zum Buch "Lineare Algebra", 2. Auflage. Errata zu den Lösungen ab Seite 3.

Stand: 23. September 2020

Seite	Zeile	Falsch	Richtig
172	10 v.u.	Matrizen	$n \times n$ -Matrizen
184	14 v.o.	gegeben, so	gegeben ist, nach evtl. Ergänzung mit anderen b_i aus
			$\operatorname{Ker}(A^k), (b_1, \ldots, b_s)$ eine Basis modulo $\operatorname{Ker}(A^{k-1})$. Es
186	9 v.o	$(A-\lambda_i)^{m_1}$	$(A - \lambda_1 \cdot \operatorname{Id})^{m_1}$
186	9 v.o.	$(A - \lambda_s)^{m_s}$ $B_i := (A - \lambda_i)^{n_i}$	$(A - \lambda_s \cdot \operatorname{Id})^{m_s}$
186	10 v.o.	$B_i := (A - \lambda_i)^{n_i}$	$(A - \lambda_s \cdot \operatorname{Id})^{m_s}$ $B_i := A - \lambda_i \cdot \operatorname{Id}$
186	10 v.o	$(A-\lambda_i)^{m_i}$	$(A - \lambda_i \cdot \operatorname{Id})^{m_i}$
200	8 v.u.	c_{ik}	(c_{ik})
201	1.v.o	Zeigen Sie: Sei V ein	Sei V ein endlich dimensionaler
208	10 v.o.	Sei	Nach Normierung gilt $ b_1 = 1$. Sei
209	8 v.u.	\mathbb{R}^n	\mathbb{R}^4
209	5 v.u.	(2,1,0,-2)	(2,4,-1,2)
210	9 v.u.	$x^T \cdot A \cdot y$	$igg x^T \cdot A \cdot \overline{y}$
242	10 v.u.	$\bigcap_{N \triangleleft G: \ R \subset N}$	$ \bigcap_{N \triangleleft F(A): R \subset N} $
248	9 v.o.	4.	4. Sei P eine p -Sylowgruppe von G .
250	7 v.o.	b^i , also $ba = a^i b$	$\mid b^i \mid$
263	8 v.o.	modulo l	modulo I
274	8 v.u.	y^6y^5	$y^6 + y^5$
276	5 v.o.	$a_s f$	$a_s f_s$
276	6 v.u.	$\mid t \mid$	s
276	11 v.u.	j teilt $LM(f_j)$, nicht $LM(f_i)$	$j \neq i$ teilt LM (f_j) kein Monom von f_i .
278	13,14 v.u.	$m(f_i, f_j)$	$igg m(f_j,f_i)$
284	10 v.o.	Letzter Satz fehlt.	Dann hat $M_g(t)$ die verschiedene Nullstellen $g(p_i)$ für $i=1,\ldots,s$, deshalb gilt $\deg(M_g(t))=s$.
284	12 v.o.	$K[x_1,\ldots,x_n]$	K[t]
288	14 v.o.	$a_1g_1 + \ldots + a_tg_t$	$a_1f_1 + \ldots + a_sf_s$
290	7 v.u.	$f \in$	$g \in$

306	17 v.u.	$(cg)^*$	$(c\overline{g})^*$
307	6 v.o.	Warum ist	Ist
330	9 v.u.	Beweis von $1 \notin I_f$ fehlt.	Siehe Ende der Errataliste.
304	6 v.o.	Elementen.	Elementen und schreibe $K = \mathbb{F}_p$.
305	18 v.o.	ist.	ist?
310	3 v. o.		9.6
310	17 v.u.	f und m^2	$\int f \cdot m + m^2$
310	16 v.u.		$\mid r_s \mid$
310	15 v.u.	$\mod f$.	$\mod f \cdot m + m^2$
310	10 v.u.	a_i	$\mid t_i \mid$

Im Beweis von Satz 10.5 Nr 3 einfügen nach 8 v.u. "eindimensional":

Wir zeigen, dass $1 \notin I_f$. Sei $f_1(x) = f(x)$ und wir definieren rekursiv $f_{i+1}(x)$ durch

$$f_i(x) = (x - x_i)f_{i+1}(x) + f_i(x_i)$$

für $i=2,\ldots n$. Hier ist $f_{i+1}(x)\in K[x_1,\ldots,x_i][x]$ normiert vom Grad n-i+1 in x. Insbesondere ist $f_{n+1}=1$. Bez. $>_{lex}$ mit $x_1<\cdots< x_n$ gilt $LM(f_i(x_i))=x_i^{n-i+1}$. Nach dem Produkt-Kriterium ist $(f_1(x_1),f_2(x_2),\ldots,f_n(x_n))$ eine Gröbner Basis und $1\notin \langle f_1(x_1),\ldots,f_n(x_n)\rangle$. Weil

$$f(x) = (x - x_1) \cdot \ldots \cdot (x - x_n) \mod \langle f_1(x_1), \ldots, f_n(x_n) \rangle$$

folgt, dass $I_f \subset \langle f_1(x_1), \dots, f_n(x_n) \rangle \neq K[x_1, \dots, x_n]$ und $1 \notin I_f$.

Errata zu den Lösungen

Aufgabe 2.23 Nr. 4:

$$det(a_1, a_2, a_3) = 26
det(b, a_2, a_3) = -92
det(a_1, b, a_3) = -208
det(a_1, a_2, b) = -122$$

Also ist
$$(x_1, x_2, x_3) = (-46/13, -8, -61/13).$$

Aufgabe 7.50, Nr. 4:

Der gesuchte Vektor ist der bis auf einem Skalar eindeutig bestimmten Vektor, der in $W^{\perp} = \langle (0,2,2,1), (-2,-2,3,-1) \rangle$ liegt und senkrecht auf dem Eigenvektor zu -1, d.h. (2,1,0,-2) steht. Offenbar ist (0,2,2,1) selbst eine Lösung.